Логические модели баз данных. Логическая модель базы данных

Аннотация

В данной курсовой работе описывается проектирование базы данных центральной городской больницы и ее реализация в Oracle Datebase. Была представлена предметная область, разработаны концептуальная, логическая и физическая модели данных. Средствами Oracle Datebase созданы необходимые таблицы, запросы, отчеты. Курсовая работа состоит из.

Введение 3

1.Предметная область 4

2.Концептуальная модель 5

3.Логическая модель базы данных 7

4.Модель физической организации данных 9

5.Реализация баз данных в Oracle 9

6.Создание таблиц 10

7.Создание запросов 16

8.Заключение 27

Список литературы 28

Введение

База данных – это единое, вместительное хранилище разнообразных данных и описаний их структур, которое после своего определения, осуществляемого отдельно и независимо от приложений, используется одновременно многими приложениями.

Кроме данных база данных может содержать средства, позволяющие каждому из пользователей оперировать только теми данными, которые входят в его компетенцию. В результате взаимодействия данных, содержащихся в базе, с методами, доступными конкретным пользователям, образуется информация, которую они потребляют и на основании которой в пределах собственной компетенции производят ввод и редактирование данных

Целью данной курсовой работы является разработка и реализация базы данных для центральной больницы, что бы обеспечить хранение, накопление и предоставление информации о деятельности больницы. Создаваемая база данных предназначена в основном для автоматизации деятельности основных подразделений больницы.

Предметная область

Предметной областьюназывается часть реальной системы, представляющая интерес для данного исследования. При проектировании автоматизированных информационных систем предметная область отображается моделями данных нескольких уровней. Число уровней зависти от сложности решаемых задач, но в любом случае включает концептуальный и логический уровни.

В данной курсовой работе предметной областью является работа центральной больницы, которая занимается лечением больных. Организационная структура больницы состоит из двух отделов: регистратуры и приёмного покоя. В регистратуре проводятся записи на приём, выдаются направления, распределяют пациентов по палатам, фиксируют номера страховых полюсов. Приёмный покой, в свою очередь, ведет учет поступления и выписки, диагнозы пациентов, историю болезни.

База данных предназначена для хранения данных о больных, их размещении, выписываемых препаратах и о лечащих врачах.


Концептуальная модель

Первая фаза процесса проектирования базы данных заключается в создании для анализируемой части предприятия концептуальной модели данных.

Концептуальная модель - это модель предметной области. Компонентами модели являются объекты и взаимосвязи. Концептуальная модель служит, средством общения между различными пользователями и поэтому разрабатывается без учета особенностей физического представления данных. При проектировании концептуальной модели все усилия разработчика должны быть направлены в основном на структуризацию данных и выявление взаимосвязей между ними без рассмотрения особенностей реализации и вопросов эффективности обработки. Проектирование концептуальной модели основано на основе анализа решаемых на этом предприятии задач по обработке данных. Концептуальная модель включает описания объектов и их взаимосвязей, представляющих интерес в рассматриваемой предметной области. Взаимосвязи между объектами являются частью концептуальной модели и должны отображаться в базе данных. Взаимосвязь может охватывать любое число объектов. С другой стороны, каждый объект может участвовать в любом числе связей. Наряду с этим существуют взаимосвязи между атрибутами объекта. Различают взаимосвязи типа: "один к одному", "один ко многим", "многие ко многим".

Самой популярной моделью концептуального проектирования является модель «сущность-связь» (ER-модель), она относится к семантическим моделям.

Основными элементами модели являются сущности, связи между ними и их свойства (атрибуты).

Сущность – это класс однотипных объектов, информация о которых должна быть учтена в модели.

Каждая сущность должна иметь наименование, выраженное существительным в единственном числе. Каждая сущность в модели изображается в виде прямоугольника с наименованием.

Атрибут – характеристика (параметр) не которой сущности.

Домен – множество значений (область определения атрибутов).

У сущностей выделяются ключевые атрибуты – ключ сущности – это один или более атрибутов, уникально определяющих данную сущность.

Набор сущностей для центральной больницы (в скобках указаны атрибуты сущностей, подчёркнуты ключевые атрибуты):

ПАЦИЕНТЫ (Код пациента , фамилия, имя, дата рождения, номер страхового полиса, код отделения);

ЛЕЧЕНИЕ (Код больного , диагноз, дата выписки, код врача, стоимость);

ОТДЕЛЕНИЯ(Код отделения , название отделения, количество палат);

ПОСТУПЛЕНИЯ (Код больного, дата поступления, код палаты);

ПАЛАТЫ (Код палаты , кол-во мест, код отделения);

ВРАЧИ (Код врача, фамилия, имя, дата рождения, номер личного дела, код отделения);

Диаграмма «сущность-связь» для районной больницы изображена на рисунке 1.


Логическая модель базы данных

Версия концептуальной модели, которая может быть обеспечена конкретной СУБД, называется логической моделью. Процесс построения логической модели базы данных должен опираться на определённую модель данных (реляционная, сетевая, иерархическая), которая определяется типом предполагаемой для реализации информационной системы СУБД. В нашем случае база данных создается в среде Oracle и будет представлять собой реляционную базу данных.

Реляционная модель характеризуется своей простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для манипулирования данными..

В реляционных моделях данных объекты и взаимосвязи между ними представляются с помощью таблиц. Каждая таблица представляет один объект и состоит из строк и столбцов. Таблица в реляционной модели называется отношением.

Атрибут (поле) – любой столбец в таблице.

Кортежи (записи) – строки таблицы.

Таблицы связаны между собой при помощи ключевых полей.

Ключ – это поле, позволяющее однозначно идентифицировать запись в таблице. Ключ может быть простым (состоит из одного поля) или составным (из нескольких полей).

В реляционных базах данных логическое проектирование приводит к разработке схемы данных, которая представлена на рисунке 2.

Рис.2.
4. Модель физической организации данных

Физическая модель данных описывает то, как данные хранятся в компьютере, представляя информацию о структуре записей, их упорядоченности и существующих путях доступа.

В физической модели описываются типы, идентификаторы и разрядность полей. Физическая модель данных отражает физическое размещение данных на машинных носителях, то есть какой файл, какие объекты, с какими атрибутами содержит и каковы типы этих атрибутов.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26

Логическими уровень – это абстрактный взгляд на данные, на нем данные представляются так, как выглядят в реальном мире, и могут называться так, как они называются в реальном мире.

Объекты модели, представляемые на логическом уровне, называются сущностями и атрибутами . Логическая модель данных может быть построена на основе другой логической модели, например на основе модели процессов. Логическая модель данных является универсальной и никак не связана с конкретной реализацией СУБД.

Различают три уровня логической модели, отличающихся по глубине представления информации о данных:

    диаграмм сущность-связь (Entity Relationship Diagram, ERD);

    модель данных, основанная на ключах (Key Based model, KB);

    полная атрибутная модель (Fully Attributed model, FA).

Диаграмма сущность-связь представляет собой модель данных верхнего уровня. Она включает сущности и взаимосвязи, отражающие основные бизнес-правила предметной области. Такая диаграмма не слишком детализирована, в нее включаются основные сущности и связи между ними, которые удовлетворяют основным требованиям, предъявляемым к ИС.

Диаграмма сущность-связь может включать связи многие-ко-многим и не включать описание ключей. Как правило, ERD используется для презентаций и обсуждения структуры данных с экспертами предметной области.

Модель данных, основанная на ключах , - более подробное представление данных. Она включает описание всех сущностей и первичных ключей и предназначена для представления структуры данных и ключей, которые соответствуют предметной области.

Полная атрибутивная модель – наиболее детальное представление структуры данных: представляет данные в третьей нормальной форме ивключает все сущности, атрибуты и связи .

В данных методических указаниях будет рассмотрена модель данных, основанная на ключах.

Основные компоненты диаграммы ERwin – это сущности, атрибуты и связи.

Каждая сущность является множеством подобных индивидуальных объектов, называемых экземплярами. Каждый экземпляр индивидуален и должен отличаться от всех остальных экземпляров. Построение модели данных предполагает определение сущностей и атрибутов, т.е. необходимо определить, какая информация будет храниться в конкретной сущности или атрибуте.Сущность можно определить как объект, событие или концепцию, информация о которой должна сохраняться. Сущности должны иметь наименование с четким смысловым значением, именоваться существительным в единственном числе, не носить «технических» наименований и быть достаточно значимыми для того, чтобы их моделировать. Именование сущности в единственном числе облегчает в дальнейшем чтение модели. Фактически имя сущности дается по имени ее экземпляра.

Сущность на диаграмме изображается прямоугольником. В зависимости от режима представления диаграммы прямоугольник может содержать имя сущности, ее описание, список ее атрибутов и другие сведения (см. рис. 34).

Рис. 34. Сущность с заполненными атрибутами.

Экземпляры независимой сущности могут быть уникально идентифицированы без определения ее связей с другими сущностями;зависимая сущность, наоборот, не может быть уникально идентифицирована без определения ее связей с другими сущностями. Зависимая сущность отображается в ERwin прямоугольником с закругленными углами (см. рис. 35).

Рис. 35. Зависимая сущность с заполненными атрибутами.

Зависимая сущность может наследовать один и тот же внешний ключ от более чем одной родительской сущности, или от одной и той же родительской сущности через использование несколько связей. Если не введены различные роли для такого множественного наследования, ERwin считает, что в зависимой сущности атрибуты внешнего ключа появляются только один раз.

В зависимости от того, все ли возможные сущности-подтипы включены в модель, категорийная связь является полной или неполной. Например, если супертип может содержать данные об уволенных сотрудниках, то эта связь - неполной категоризации, так как для него не существует записи в сущностях - подтипах. В ERwin полная категория изображается окружностью с двумя подчеркиваниями, а неполная - окружностью с одним подчеркиванием.

Унификация - это объединение двух или более групп атрибутов внешних ключей в один внешний ключ (группу атрибутов), в предположении, что значения одноименных атрибутов в дочерней сущности всегда одинаковы. Рассмотрим пример: сущность "сотрудник" имеет первичный ключ "код сотрудника" и связан идентифицирующей связью с сущностями "супруга" и "дети". При этом происходит миграция первичного ключа в зависимые сущности. В свою очередь, сущность "супруга" связана не идентифицирующей связью с сущностью "дети". Имеются два пути миграции ключа, однако в сущности "дети" атрибут "код сотрудника" появляется один раз в качестве элемента первичного ключа. Существуют случаи, когда унификация атрибутов дает неверный с точки зрения предметной области результат. Для отмены унификации для атрибутов вводятся имена ролей.

Атрибут выражает свойство объекта, характеризующее его экземпляр (определенное свойство объекта. С точки зрения БД (физическая модель) сущности соответствует таблица, экземпляру сущности – строка в таблице, а атрибуту – колонка таблицы. Горизонтальная линия прямоугольника разделяет атрибуты сущности на два набора: атрибуты, составляющие первичный ключ (в верхней части) и прочие, не входящие в первичный ключ (в нижней части).

Первичный ключ - это атрибут или набор атрибутов, уникально идентифицирующий экземпляр сущности. Если несколько наборов атрибутов могут уникально идентифицировать сущность, то выбор одного из них осуществляется разработчиком на основании анализа предметной области. Для каждого первичного ключа ERwin создает при генерации структуры БД уникальный индекс.

Если между некоторыми сущностями существует связь, то факты из одной сущности ссылаются или некоторым образом связаны с фактами из другой сущности. Связь – это функциональная зависимость между сущностями. Поддержание непротиворечивости функциональных зависимостей между сущностями называется ссылочной целостностью. Поскольку связи содержатся "внутри" реляционной модели, реализация ссылочной целостности может выполняться как приложением, так и самой СУБД (с помощью механизмов декларативной ссылочной целостности, триггеров). Связь это понятие логического уровня, которому соответствует внешний ключ на физическом уровне. Связь называетсяидентифицирующей , если экземпляр дочерней сущности идентифицируется через ее связь с родительской сущностью. Атрибуты, составляющие первичный ключ родительской сущности, при этом входят в первичный ключ дочерней сущности. Дочерняя сущность при идентифицирующей связи всегда является зависимой. Связь называетсяне идентифицирующей , если экземпляр дочерней сущности идентифицируется иначе, чем через связь с родительской сущностью. Атрибуты, составляющие первичный ключ родительской сущности, при этом входят в состав не ключевых атрибутов дочерней сущности.

Для добавления сущности следует нажать кнопку , а затем – щелкнуть «мышью» по свободному месту диаграммы. После этого по созданному элементу

следует щелкнуть два раза левой кнопкой «мыши». В открывшемся диалоговом окне Attributes (см. рис. 36) следует:

Рис. 36. Окно для заполнения атрибутов сущности.

Таблица 5.

Расшифровка назначения типов атрибутов

Для каждого атрибута имеется возможность ввода дополнительных характеристик, расположенных на вкладках окна Attributes :

    General (основные характеристики атрибута);

    Datatype (выбранный формат атрибута);

    Definition (пояснения);

    Note (комментарий для данного атрибута);

    UDP (свойства атрибутов сущности, добавляемых пользователем);

    Key Group (отношение выбранного атрибута к ключевым признакам);

    History (история возникновения атрибута).

Для связывания таблиц следует, нажав кнопку или(идентифицирующая связь) или(не идентифицирующая связь), щелкнуть левой кнопкой «мыши» на одной таблице, а затем щелкнуть «мышью» на другой таблице, с которой требуется выполнить связь.

Пример логической модели данных представлен на рис. 37.

Для компактного расположения модели на листе бумаги при печати следует вызвать в меню File режимPrint , а в открывшемся окнеPrint (см. рис. 38) нажать кнопкуFit model.

Рис. 37. Пример логической модели данных

Рис. 38. Окно для настройки параметров печати.

Логическая модель данных - описание объектов предметной области, их атрибутов и взаимосвязей между ними в том объеме, в котором они подлежат непосредственному хранению в базе данных системы.

Логическая модель строится в несколько этапов с постепенным приближением к оптимальному для данных условий варианту. Эффективность такой модели зависит от того, насколько близко она отображает изучаемую предметную область. К предметной области относятся объекты (документы, счета, операции над ними и пр.), а также характеристики данных объектов, их свойства, взаимодействие и взаимное влияние.

Таким образом, при построении логической модели данных сначала выявляются те объекты, которые интересуют пользователей проектируемой базы данных. Затем для каждого объекта формулируются характеристики и свойства, достаточно полно описывающие данный объект. Эти характеристики в дальнейшем будут отражены в базе данных как соответствующие поля.

Логическая модель данных строится в рамках одного из трех подходов к созданию баз данных. Выделяют следующие виды логических моделей базы данных:

Иерархическая;

Сетевая;

Реляционная.

Иерархическая модель представляет собой древовидную структуру, которая выражает связи подчинения нижнего уровня высшему. Это облегчает поиск информации в том случае, если запросы имеют такую же структуру.

Сетевая модель отличается от предыдущей наличием также и горизонтальных связей. Это усложняет как модель, так и саму базу данных и средства ее управления.

Реляционная модель представляет хранимую информацию в виде таблиц, над которыми возможно выполнение логических операций (операций реляционной алгебры). В настоящий момент этот вид моделей получил наибольшее распространение. Это связано со сравнительной простотой реализации, четкой определенностью отношений между объектами, простотой изменения структуры базы данных.

Описание пользователей и групп пользователей системы

Разрабатываемая информационно-справочная система может быть использована как сотрудниками кинотеатра, так и посетителями. Сотрудник кинотеатра может обеспечивать редактирование имеющейся информации об имеющихся фильмах, изменять график работы кинотеатра, включать вновь поступившие фильмы в репертуар кинотеатра; а посетитель может просматривать информацию о графике работы кинотеатра, стоимости билетов, фильмах на сегодня.

Модель предметной области

Одним из наиболее удобных инструментов унифицированного представления данных, независимого от реализующего его программного обеспечения, является модель "сущность-связь" (entity - relationship model, ER - model). Модель "сущность-связь" основывается на некой важной семантической информации о реальном мире и предназначена для логического представления данных. Она определяет значения данных в контексте их взаимосвязи с другими данными. Категории «сущность» и «связь» объявляются основополагающими, и разделение их производится на этапе создания конкретных представлений некоторой предметной области.

Каждая сущность принадлежит к некоторому классу, иначе говоря, ей соответствует некоторый тип. Между сущностями имеются связи, которые пользователь относит к определенному классу (типу). Таким образом, класс сущностей и класс связей определяют множества конкретных объектов и связей между ними. Некоторая сущность может принадлежать более чем к одному классу.

Совокупность сущностей и классов связей образует верхний уровень модели.

Сущности и связи описываются характерными для них атрибутами. Среди атрибутов какой-нибудь сущности или связи выделяется подсписок, значения атрибутов которого однозначно идентифицируют сущность или связь в пределах типа. Сущности, связи и атрибуты образуют нижний уровень модели.

Важным является тот факт, что из модели "сущность-связь" могут быть порождены все существующие модели данных (иерархическая, сетевая, реляционная, объектная), поэтому она является наиболее общей.

Модель «сущность-связь» представлена в Приложении Е.

Реляционная база данных состоит из нормализованных таблиц. В процессе загрузки и корректировки базы данных, для получения информации по запросам и вывода отчётов, а также для решения большинства задач необходим одновременный доступ к нескольким взаимосвязанным таблицам. Взаимосвязь между таблицами базы данных устанавливается реляционными соотношениями.

Связи, определенные в схеме данных, используются автоматически при разработке многотабличных форм, запросов, отчетов, существенно упрощая процесс их конструирования.

Программный продукт представлен проектом - Cinema, который имеет 4 связанных между собой таблицы:

Bilety - информация реализованных билетах;

Films - информация о всех имеющихся в кинотеатре фильмах;

Seansy - информация о времени проведения сеансов и стоимости билетов на эти сеансы;

Today - информация о фильмах, которые будут показаны на сегодняшний день.

Логическая модель – графическое представление структуры базы данных с учетом принимаемой модели данных (иерархической, сетевой, реляционной и т.д.), независимое от конечной реализации базы данных и аппаратной платформы. Иными словами, онапоказывает, ЧТО хранится в базе данных (объекты предметной области, их атрибуты и связи между ними), но не отвечает на вопрос КАК (рис. 1).

Описание предметной области:

Оптовый заводск ой склад

На склад поставляются детали, выполненные из определенных материалов (литые), от заданного круга поставщиков (постоянных или случайных) из различных городов.

В качестве поставщиков могут выступать юридические лица и индивидуальные предприниматели, причем эти группы описываются своим набором характеризующих атрибутов; юридические лица – номер и дата гос. регистрации, наименование, юридический адрес, форма собственности; предприниматели – ИНН, ФИО, страховой полис, номер паспорта, дата рождения.

При оформлении поставки учитываются дата, количество и стоимость, вид упаковки и способ доставки (автотранспорт, ж/д транспорт, самовывоз), причем одна поставка может включать несколько видов деталей.

Поставщики переходят в разряд постоянных, если они совершили поставок на сумму свыше 1 000 000 рублей в год.

Осуществляется отпуск деталей в цеха завода с учетом даты, количества и номера цеха. Поддерживается актуальное количество товаров на складе.

Рис. 1. Логическая модель базы данных в нотации IDEF1X

Методология IDEF1 X – один из подходов к моделированию данных, основанный на концепции "сущность – связь" (Entity – Relationship ), предложенной Питером Ченом в 1976 г.

Таблица 2.1. Основные элементы нотации IDEF1X

Сущность (Entity)

Графическое изображение

Независимая сущность

Наименование

Уникальный идентификатор

Атрибуты

Зависимая сущность

Атрибуты

Связь (Relationship)

Графическое изображение

Неидентифицирующая связь

Идентифицирующая связь

Связь «Многие ко многим»

Наследование (обобщение)

Неполное

Родительск.

Независимая сущность – это сущность, уникальный идентификатор которой не наследуется из других сущностей. Изображается в виде прямоугольника с прямыми краями.

Зависимая сущность – это сущность, уникальный идентификатор которой включает по меньшей мере одну связь с другой сущностью. Например, строка документа не может существовать без самого документа (зависит от него). Изображается в виде прямоугольника с закругленными краями.

Методология IDEF1X ориентирована на проектирование реляционных моделей баз данных. В основе реляционной модели лежит понятие нормализованного отношения (таблицы). При этом сущности предметной области отображаются в таблицы базы данных (рис. 2), обладающие следующими свойствами:

Рис.
2. Таблица реляционной базы данных

Ключ - столбец или группа столбцов, значения которых однозначно идентифицируют каждую строку.

В одной таблице может быть несколько ключей: один первичный , посредством которого осуществляется связывание отношений, а другие – альтернативные. Свойства ключа:

    уникальность (не может быть строк с одинаковым ключом);

    неизбыточность (удаление любого атрибута из ключа лишает его свойства уникальности).

Реляционная база данных − это множество связанных между собой отношений. Связи задаются с помощью вторичных ключей (Foreign key – FK), т.е. атрибутов, которые в других отношениях являются первичными ключами (Primary key – PK).

Основные ограничения целостности реляционной модели:

    атрибуты из первичного ключа не могут принимать неопределенное значение (целостность объектов);

    вторичные ключи не могут принимать значения, которых нет среди значений первичных ключей связанной таблицы: если отношение R2 имеет среди своих атрибутов какой-то внешний ключ (FK), который соответствует первичному ключу (PK) отношения R1, то каждое значение FK должно быть равно одному из значений PK.

Создание Логической модели БД в Visio

Чтобы создать Логическую модель базы данных в Visio2013, выберите Категорию шаблонов «Программы и базы данных», а в ней шаблон «Схема модели базы данных» (рис. 2.3)

Рис. 2.3. Шаблон «Схема модели базы данных»

Прежде, чем приступить к созданию Логической модели, зайдите на вкладку «База данных» и в «Показать параметры» выставьте следующие настройки (рис. 2.4-2.6).

Рис. 2.4.Параметры документа (вкладка «Общие»)

Рис. 2.6.Параметры документа (вкладка «Отношение»)

Рис. 2.5.Параметры документа (вкладка «Таблица»)

Чтобы создать Сущность «Деталь», перетащите стереотип Сущность с панели инструментов на экран (рис. 2.7).

Рис. 2.7.Создание Сущности

Задайтеимяновой Сущности в свойствах в нижней части экрана (рис. 2.8).

Рис. 2.8.Свойства Сущности («Определение»)

Затем на вкладке Столбцы создайте атрибуты Сущности, отметьте уникальный идентификатор (первичный ключ) галочкой в столбце PK и нажмите кнопку «ОК» (рис. 2.9).

Рис. 2.9.Свойства Сущности («Столбцы»)

Аналогично создайте вторую сущность, например «Материал». Чтобы создать связь между ними, перетащите стереотип «Отношение» точкой на изображение класса «Деталь», т.к. из каждого материала изготавливается ноль, одна или несколько деталей. Затем второй конец связи перетащите на изображение класса «Материал» (рис. 2.10). Внешний ключ «Код материала (FK)» автоматически появится в составе атрибутов сущности «Деталь».

Незакрашенный ромб со стороны Материала означает, что материал может быть не указан. Чтобы убрать ромб, откройте свойства сущности «Деталь» и поставьте этому атрибуту галочку в столбце «Обязательное».

Рис. 2.10.Свойства отношения («Определение»)

Задание : постройтелогическую модель базы данных в соответствии с описанием предметной области из вашего варианта задания.


Логические модели реализуются средствами так называемой логики предикатов.

Предикат – функция, принимающая только два значения – «истина» и «ложь» и предназначаемая для выражения свойств объектов и связей между ними.

Выражение, в котором подтверждается или опровергается наличие каких-либо свойств у объекта наз. высказыванием.

Константы логики предикатов служат для именования объектов предметной области.

Логические выражения (или высказывания) образуют атомарные (простейшие) формулы.

Интерпретация предикатов – множество всех допустимых связываний переменных с константами. При этом связывани я – подстановка констант вместо переменных.

Высказывание логически следует из заданных посылок. Оно истинно всегда, когда истинны посылки.

Наиболее простым языком логики является исчисление высказываний, в которых отсутствуют переменные. К каждому высказыванию можно приписать значение «истинно» или «ложно». Отдельные высказывания могут соединяться связками «и», «или», «не», которые называются бумейми операторами.

Основу исчисления высказываний составляют правила образования сложных высказываний из атомарных.

Пример сложных высказываний.

А – истинно и В – ложно.

А и В истинно.

А и В – логические высказывания, о которых можно сказать, что они истинны или ложны. Исчисление высказываний – недостаточно выразительное средство для обработки знаний, так как в нем не могут быть представлены выражения, включающие переменные с кванторами.

Исчисление предикатов с кванторами (логика предикатов) является расширением исчисления высказываний, в которых для выражения отношений предметной области могут использоваться предложения, включающие не только константы, но и переменные.


Предикаты: clear (a), clear (c), ontable (a), ontable (c), on (c,b), cube(a), cube(b), pyram.de(c).

В общем случае модели, основанные на логике предикатов, описываются формальной системой, которая задается четверкой:

М = {Т, Р, А, П}

Т – множество базовых элементов (алфавит)

Р – множество синтаксических правил, на которых можно строить синтаксически корректные предложения

А – множество аксиом или несколько синтаксически правильных предложений, заданных априорно

П – правила продукций (правило вывода или семантическое правило, с помощью которого можно расширить множество А, добавляя в него синтаксически правильные предложения

Главное преимущество логических моделей: возможность непосредственно запрограммировать механизм вывода логически правильных предложений. Однако, с помощью правил, задающих синтаксис языка, нельзя установить истинность или ложность того или иного высказывания. Это распространяется на все языки программирования, реализующие логику предикатов.

Высказывание может быть построено синтаксически правильно, но оказаться совершенно бессмысленным.

Логические модели представления и манипулирования знаний были особенно популярны в 70-х годах 20 века, особенно с появлением языка пролог.

По мере того, как в поле зрения исследователей включались все новые интеллектуальные задачи, стало ясно, что говорить о доказательном выводе можно в небольшом числе случаев, когда проблемная область, в которой решалась задача, формально описана и полностью известна. Но в большинстве задач, где интеллект человека позволяет найти решение, связанное с областями, где знания принципиально не полны, не точны и не корректны. При таких условиях речь может идти только о правдоподобном выводе, при котором окончательный результат получается лишь с некоторой оценкой уверенности в его истинности.

Поэтому дальнейшее развитие баз знаний, использующих логические модели, шло по пути работ в области так называемых индуктивных логик, логик «здравого смысла», логик «веры» и др. логических систем, имеющих мало общего с классической логикой.

ФРЕЙМ

Фрейм – структура данных для представления стереотипных ситуаций. Модель представления данных на основе фреймов использует концепцию организации памяти понимания и обучения человека, предложена в 1979 году М. Минским.

Фрейм (рамка) – единица представления знаний, детали которой могут изменятсяв соответствии с текущей ситуацией. Фрейм в каждый момент времени может быть дополнен различной информацией, касающейся способов его применения, последствий этого применения и т.п.

Структура фрейма – характеристика описываемой стереотипной ситуации и их значения, которые называются слотами и заполнителями слотов .

Структура:

(Имя фрейма: Имя слота 1 (значение слота 1); Имя слота 2 (значение слота2); . . . Имя слота N (значение слотаN))

Значением слота может быть практически что угодно: числа, формулы, тексты на естественном языке, программы, правила вывода или ссылка на другие слоты данного фрейма или других фреймов.

В качестве значения слота может быть значение слота более низкого уровня, что позволяет реализовать «принцип матрешки».

Фрейм – структура данных, представляющая стереотипную ситуацию. К каждому фрейму присоединяется несколько видов информации. Часть этой информации о том, как использовать фрейм, другая часть – о том, что можно ожидать далее, еще одна часть – что следует делать, если ожидания не подтвердятся.

Фрейм можно представить в виде своеобразной таблицы.

В таблице дополнительные столбцы предназначаются для описания способа получения слотом его значения и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов.

В качестве значения слота может выступать имя другого фрейма. Так образуются сети фреймов.

Существует несколько способов получения слотом значения во фрейм экземпляре:

1) по умолчанию от фрейма образца;

2) через наследование свойств от фрейма указанного в слоте АКО;

3) по формуле, указанной в слоте;

4) через присоединяющуюся процедуру;

5) явно из диалога с пользователем;

6) из БД.

Важнейшим свойством теории фреймов является так называемое наследование свойств. Это наследование происходит по АКО – связям. A KIND OF (AKO)

Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, т.е. переносятся, значения аналогичных слотов.

В сети фреймов на рисунке понятие «ученик» наследует свойства фреймов «ребенок» и «человек», которые находятся на более высоком уровне иерархии. Так, на вопрос «любят ли ученики сладкое», следует ответ «да», так как этим свойством обладают все дети, что указано во фрейме «ребенок».

Наследование может быть частичным, так как возраст учеников не наследуется из фрейма «ребенок», так как указан явно в своем собственном фрейме.

Различают статические и динамические системы фреймов.

В статических системах фреймов фреймы не могут быть изменены в процессе решения задачи, а в динамических системах фреймов этот допустимо.

В системах программирования, основанных на фреймах, говорят, что они являются объектно-ориентированными. Каждый фрейм соответствует некоторому объекту предметной области, а слоты содержат описывающие этот объект данные, т.е. в слотах содержатся значения признаков объекта.

Фрейм может быть представлен в виде списка свойств, а если использовать средства БД, то в виде записи.

Наиболее ярко достоинства фреймовых систем представления знаний проявляются в том случае, когда родовидовые связи изменяются нечасто и предметная область насчитывает немного исключений.

Во фреймовых системах данные о родовидовых связях хранятся явно как и значения других типов.

Значения слотов представляются в системе в единственном экземпляре, так как включаются только в один фрейм, описывающий наиболее общие понятия из всех тех, которые содержит слот с данным именем. Такое свойство систем фреймов обеспечивает экономное размещение базы знаний в памяти компьютера.

Еще одно достоинства фреймов – значение каждого слота может быть вычислено с помощью соответствующих процедур или найдено эвристическими методами. Фреймы позволяют манипулировать как декларативными, так и процедурными знаниями.

Недостатки фреймовых систем: относительно высокая сложность.